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Abstract. The sensitivity of optimal integrated observables to electroweak triple gauge couplings is
investigated for the process e−e+ → W −W+ → 4 fermions at future linear colliders. By a suitable repa-
rameterisation of the couplings we achieve that all 28 coupling parameters have uncorrelated statistical
errors and are naturally normalised for this process. Discrete symmetry properties simplify the analysis
and allow checks on the stability of numerical results. We investigate the sensitivity to the couplings of
the normalised event distribution and the additional constraints that can be obtained from the total rate.
Particular emphasis is put on the gain in sensitivity one can achieve with longitudinal beam polarisation.
We also point out questions that may best be settled with transversely polarised beams. In particular we
find that with purely longitudinal polarisation one linear combination of coupling parameters is hardly
measurable by means of the normalised event distribution.

1 Introduction

The Standard Model (SM) of electroweak interactions has
been thoroughly investigated both theoretically and ex-
perimentally and turned out to be very successful. After
the discovery of the massive gauge bosons W and Z, the
direct measurement of the triple gauge couplings (TGCs),
i.e. the couplings between two charged and one neutral
gauge boson, has been an important issue at the TEVA-
TRON and LEP as their values are determined by the
non-Abelian electroweak gauge group. At e+e− colliders
the production of W pairs, single W s, single photons and
single Zs is suitable for that. In this paper we consider
the process e−e+ → W−W+ → f1f2f3f4, where both the
γWW and the ZWW couplings can be measured at the
scale given by the c.m. energy.

Deviations from the SM at the γWW and ZWW ver-
tices can be parameterised in a general framework. Allow-
ing for complex couplings the most general vertex func-
tions lead to altogether 28 real parameters [1]. All four
LEP collaborations have investigated TGCs [2], the tight-
est constraints being of order 0.05 for∆gZ

1 and λγ , of order
0.1 for ∆κγ and of order 0.1 to 0.6 for the real and imag-
inary parts of C and/or P violating couplings. All these
values correspond to single parameter fits. Since only up
to three-parameter fits have been performed, only a small
subset of couplings has been considered at a time, thereby
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neglecting correlations between most of them. Moreover
many couplings, notably the imaginary parts of C and P
conserving couplings, have been excluded from the analy-
ses.

At a future linear e+e− collider like TESLA [3] or
CLIC [4], respectively covering a c.m. energy range from
about 90 GeV to 800 GeV and from about 500 GeV to
5 TeV, one will be able to study these couplings with un-
precedented accuracy. In this way one may begin to be
sensitive to different extensions of the SM, which pre-
dict deviations at the TGCs from the SM values, typi-
cally through the effects of new particles and couplings
in radiative corrections. Some examples, where effects of
order 10−3 may occur, are supersymmetric models [5,6],
models containing several Higgs doublets [7,8], E6 vector
leptons [9] or Majorana neutrinos [10] and the minimal
3-3-1 model [11]. For left–right symmetric models [12,13,
8] and mirror models [13] the effects are predicted to be
much smaller, whereas models containing composite W
bosons [14] or an additional gauge boson Z ′ [15] may lead
to larger effects.

Given the intricacies of a multi-dimensional parameter
space, the full covariance matrix for the errors on the cou-
plings should best be studied. The high statistics needed
for this will for instance be available at TESLA, where the
integrated luminosity is projected to be about 500 fb−1 or
more per year at 500 GeV which for unpolarised beams
amounts to about 3.7 million produced W pairs (without
cuts). For a run at 800 GeV the luminosity is expected to
be twice as high, leading to 3.9 million W pairs. Moreover,
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polarised beams will be particularly useful to disentangle
different couplings. In fact, certain directions in the pa-
rameter space of the couplings, the so called right-handed
couplings, are difficult to measure in W pair production
with unpolarised beams [16]. In this case their effects are
masked by the large contribution from the neutrino ex-
change. With polarised beams the strength of the neutrino
exchange contribution can in essence be varied freely.

In experimental analyses of TGCs and various other
processes, optimal observables [17,16] have shown to be a
useful tool to extract physics parameters from the event
distributions. These observables are constructed to have
the smallest possible statistical errors. Due to this prop-
erty they are also a convenient means to determine the
theoretically achievable sensitivity in a given process. In
addition, they take advantage of the discrete symmetries
of the cross section.

The method proposed in [18] allows one to simultane-
ously diagonalise the covariance matrix of the observables
and the part of the cross section which is quadratic in
the couplings. In this way one obtains a set of coupling
constants that are naturally normalised for the particular
process and – in the limit of small anomalous couplings
– can be measured without statistical correlations. This
allows one to see for which directions in parameter space
the sensitivity to the TGCs is high and for which it is not,
which is hardly possible by looking at covariance matrices
of large dimension without diagonalisation. Moreover, the
total cross section acquires a particularly simple form and
provides additional constraints.

The basic purpose of this work is to use this extended
optimal-observable method for a systematic investigation
of the prospects to measure the full set of TGCs in W
pair production at linear collider energies, with special
emphasis on initial-state polarisation. The usefulness of
the method becomes particularly evident when consider-
ing imaginary parts of CP conserving TGCs. In this sub-
space of couplings we find one direction to which – in
the linear approximation and for longitudinally polarised
beams – there is no sensitivity in the process we consider.
In [18] this was not taken into account and led to numeri-
cal instabilities. It is therefore essential to disentangle the
measurable TGCs from the hardly measurable one. As a
historical motivation one may think of the electromag-
netic nucleon form factors F1 and F2, where the choice
of linear combinations GE and GM leads to a simplifica-
tion of the Rosenbluth formula for the differential cross
section of electron–nucleon scattering (see e.g. [19]). Since
we deal with 28 couplings here, an appropriate choice of
parameters is essential.

We restrict ourselves to the semileptonic decays of the
W pair, where oneW boson decays into a quark-antiquark
pair and the other decays leptonically, but leave aside the
decay into τντ since these events have a completely dif-
ferent experimental signature. The selected channels have
a branching ratio of altogether 8/27, which is six times
larger than that of both W s decaying into eνe or µνµ.
On the other hand, the channels where both W s decay
hadronically are difficult to reconstruct [20]. The semilep-
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Fig. 1. Momenta and helicities of the particles in the e+e−

c.m. frame

tonic channels have only one ambiguity in the kinemati-
cal reconstruction if the charges of the two jets from the
hadronically decaying W are not tagged. Then one cannot
associate the jets to the up- and down-type (anti)quark of
the W decay, and therefore has access only to the sum of
the distributions corresponding to the two final states.

This work is organised as follows: In Sect. 2 we re-
call the helicity amplitudes and cross sections of the pro-
cess using a spin density matrix formalism. In Sect. 3 the
optimal-observable method is presented in the form as it
is used in our numerical calculations. We explain our tech-
nique to implement the simultaneous diagonalisation in a
numerically stable way. The role of discrete symmetries in
the framework of optimal observables is described. Many
of the symmetry relations are well known, notably the
classification of the TGCs into four symmetry classes [1]
and its applicability to the optimal-observable method [16,
18]. Other properties are used for a check on the numerics.
In Sect. 4 the dependence of the sensitivity on longitudi-
nal beam polarisation is illustrated by a simple model. In
Sect. 5 we show analytically that one is insensitive to one
of the imaginary CP conserving couplings in the case of
longitudinal beam polarisation. However, this particular
coupling becomes accessible with transverse beam pola-
risation. In Sect. 6 we present our numerical results, in
Sect. 7 our conclusions.

2 Cross section

First we briefly recall the differential cross section of the
process

e− + e+ → W− + W+

↪→ f1 + f2, ↪→ f3 + f4,
(1)

for arbitrary initial beam polarisations, where the final
state fermions are leptons or quarks. Our notation for
particle momenta and helicities is shown in Fig. 1. Our
coordinate axes are chosen such that the e− momentum
points in the positive z-direction and the y unit vector is
given by êy = (k × q)/|k × q|.

In the e+e− c.m. frame and at a given c.m. energy
√
s,

a pure initial state of longitudinally polarised e− and e+

is uniquely specified by the e− and e+ helicities:

|ττ〉 = |e−(k, τ)e+(k, τ)〉 (τ, τ = ±1). (2)
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Note that fermion helicity indices are normalised to 1
throughout this work. A mixed initial state of arbitrary
polarisation is given by a spin density matrix

ρ =
∑
(τ)

|ττ〉ρ(ττ)(τ ′τ ′)〈τ ′τ ′|, (3)

where (τ) denotes summation over τ , τ , τ ′ and τ ′, and
the matrix elements satisfy ρ∗

(ττ)(τ ′τ ′) = ρ(τ ′τ ′)(ττ) and∑
τ,τ ρ(ττ)(ττ) = 1. We define the cross section operator

dσ =
∑
(τ)

|τ ′τ ′〉dσ(τ ′τ ′)(ττ)〈ττ | (4)

by requiring the differential cross section for arbitrary ρ
to be

dσ|ρ = tr(dσρ) =
∑
(τ)

dσ(τ ′τ ′)(ττ)ρ(ττ)(τ ′τ ′). (5)

The matrix dσ(τ ′τ ′)(ττ) is given by

dσ(τ ′τ ′)(ττ) =
1
2s

∫
dΓ 〈f |T |ττ〉〈f |T |τ ′τ ′〉∗, (6)

where we neglect the electron mass in the flux factor. Here
|f〉 = |f1 (p1, τ1) f2 (p2, τ2) f3 (p3, τ3) f4 (p4, τ4)〉 is the fi-
nal state, T the transition operator and

dΓ =

(
4∏

i=1

d3pi

(2π)32p0
i

)
(2π)4δ(4)

(
k + k −

∑
i

pi

)
(7)

the usual phase space measure for final states. Using the
narrow-width approximation for the W s the result is

dσ(τ ′τ ′)(ττ) = R
∑
(λ)

dP(λλ)(λ′λ′)
(τ ′τ ′)(ττ) dDλ′λdDλ′λ, (8)

R =
β

218π6(mWΓW )2s
. (9)

Here mW is the W boson mass, ΓW its width and β =
(1 − 4m2

W /s)1/2 its velocity in the e+e− c.m. frame. The
sum (λ) runs over λ, λ′, λ and λ′. Furthermore

dP(λλ)(λ′λ′)
(τ ′τ ′)(ττ) = d(cosΘ) dΦ 〈λλ,Θ|T |ττ〉〈λ′λ′, Θ|T |τ ′τ ′〉∗

(10)
is the differential production tensor for the W pair and

dDλ′λ = d(cosϑ) dϕ 〈f1f2|T |λ〉〈f1f2|T |λ′〉∗,

dDλ′λ = d(cosϑ) dϕ 〈f3f4|T |λ〉〈f3f4|T |λ′〉∗ (11)

are the tensors of the W− and W+ decays in their re-
spective c.m. frames. Note that in the narrow-width ap-
proximation the intermediate W s are treated as on-shell.
We define the W helicity states which occur on the right
hand side of (10) in the frame of Fig. 1, i.e. we choose the
e−e+ → W−W+ scattering plane as the x–z-plane and
define Θ to be the polar angle between the W− and e−
momenta. We choose a fixed direction transverse to the
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Fig. 2a,b. Definition of azimuthal angles

beams in the laboratory. By Φ we denote the azimuthal an-
gle between this fixed direction and the e−e+ → W−W+

scattering plane (see Fig. 2a). The respective frames for
the decay tensors (11) are defined by a rotation by Θ
about the y-axis of the frame in Fig. 1 (such that the W−
momentum points in the positive z-direction) and a sub-
sequent rotation-free boost into the c.m. system of the
corresponding W . The spherical coordinates are those of
the f1 and f4 momentum directions, respectively. In its
rest frame, the quantum state of a W boson is determined
by its polarisation. For real W s we take as basis the eigen-
states of the spin operator Sz with the three eigenvalues
λ = ±1, 0. For off-shell W s a fourth, scalar polarisation
occurs but is suppressed by mf/mW in the decay ampli-
tude.

Neglecting the electron mass we have in the SM

dσ(τ ′τ ′)(ττ) = 0 for τ = τ or τ ′ = τ ′, (12)

which we will use in the following (this point is further dis-
cussed in Sect. 3.3). At a linear collider the initial beams
are uncorrelated so that their spin density matrix fac-
torises, i.e.

ρ(ττ)(τ ′ τ ′) = ρττ ′ρτ τ ′ , (13)

where ρττ ′ and ρτ τ ′ are the two Hermitian and normalised
spin density matrices of e− and e+ respectively. We pa-
rameterise these matrices by

ρττ ′ =
1
2

(
1+

→
p

−
· →
σ

)
ττ ′

,

ρτ τ ′ =
1
2

(
1−

→
p

+
· →
σ∗
)

τ τ ′
, (14)

with

→
p

±
= P±

t

 cosϕ±

sinϕ±

0

+ P±
l

 0
0

∓1

 , (15)
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Fig. 3. Feynman diagrams for the process e−e+ → W −W+

with anomalous TGCs

where 0 ≤ ϕ± < 2π, and the vector components of
→
σ are

the Pauli matrices. The degrees P±
t of transverse and P±

l

of longitudinal polarisation obey the relations (P±
t )2 +

(P±
l )2 ≤ 1 and P±

t ≥ 0. The components of
→
p

±
in (15)

refer to the frame of Fig. 1. Note that choosing the same

reference frame for
→
p

−
and

→
p

+
while specifying each spinor

in its respective helicity basis results in different forms
of the density matrices in (14). The relative azimuthal

angle ψ = ϕ− − ϕ+ between
→
p

−
and

→
p

+
is fixed by the

experimental conditions, whereas the azimuthal angle ϕ−

of
→
p

−
in the system of Fig. 1 depends on the final state

(see Fig. 2b). For the case where P−
t �= 0 we choose the

transverse part of the vector
→
p

−
as fixed direction in the

laboratory. Then we have Φ = −ϕ−. Using (5) and (12) to
(15), we obtain the differential cross section for arbitrary
polarisation:

dσ|ρ =
1
4

{
(1 + P−

l )(1 − P+
l )dσ(+−)(+−) (16)

+(1 − P−
l )(1 + P+

l )dσ(−+)(−+)

−2P−
t P

+
t

[
Re dσ(+−)(−+) cos (ψ + 2Φ)

+Im dσ(+−)(−+) sin (ψ + 2Φ)
]}
.

In the absence of transverse polarisation, (16) is indepen-
dent of Φ due to rotational invariance.

In our analysis we evaluate the matrix elements in (10)
at tree level in the SM, replacing the γWW and ZWW
vertices by their most general forms allowed by Lorentz in-
variance. The corresponding Feynman diagrams are shown
in Fig. 3. New physics may also lead to deviations from the
SM values at the fermion–boson vertices [21]. For these
vertices we however retain the SM expressions, follow-
ing the rationale that at present they are confirmed ex-
perimentally to a much higher precision than the triple
gauge couplings. We remark that there are scenarios of
physics beyond the SM where such a treatment is not ade-
quate, since the process e−e+ → W−W+ can receive non-
standard contributions that cannot be expressed in terms
of anomalous fermion–boson or three-boson couplings (an
example are box graph contributions in supersymmetric
theories [5,22]). Such effects can still be parameterised
within a more general form factor ansatz [23]. If they are
important, an analysis in terms of only TGCs will not
give a correct picture of the underlying physics, but it
will still correctly signal a deviation from the SM. We fi-
nally remark that radiative corrections in the SM itself

can be included in the analysis procedure we develop here
(see Sect. 3). The purpose of the present study is however
to investigate the pattern of sensitivity to TGCs and its
dependence on beam polarisation, and for this purpose it
should be sufficient to take the SM prediction at tree level.

For the three-boson vertices we use the parameterisa-
tion (2.4) in [1], which we express in terms of the coupling
parameters gV

1 , κV , λV , gV
4 , gV

5 , κ̃V and λ̃V (V = γ, Z) by
means of the transformation (2.5) in the same reference.
In other words, we understand these parameters as form
factors of the three-boson vertices, which depend on the
boson virtualities and can take complex values, and not
as coupling constants in an effective Lagrangian, which by
definition are energy independent and real-valued.

For a given e− beam helicity τ the process (1) is not
sensitive to all couplings, but only to the linear combina-
tions gL

1 , κL, etc. for left-handed (τ = −1) and gR
1 , κR,

etc. for right-handed (τ = 1) electrons, where

gL
1 = 4 sin2 θW gγ

1 + (2 − 4 sin2 θW)ξgZ
1 ,

gR
1 = 4 sin2 θW gγ

1 − 4 sin2 θW ξgZ
1 , (17)

and similarly for the other couplings [1,16]. Here e denotes
the positron charge, θW the weak mixing angle, and ξ =
s/(s − m2

Z) the ratio of the Z and photon propagators.
The parameterisation (17) will in the following be called
the L(eft)-R(ight)-basis.

The expressions of the amplitudes can be found in [1].
For convenience of the reader we rewrite the W−W+ pro-
duction part in terms of the LR-basis. The matrix element
of (10) is given by

〈λλ,Θ|T |ττ〉 = −
√

2e2M(τ ;λ, λ;Θ)ηdJ0
∆τ,∆λ(Θ), (18)

where η = ∆τ(−1)λ, ∆τ = 1/2(τ − τ), ∆λ = λ − λ, and
J0 = max(|∆τ |, |∆λ|). The definition of the d-functions
and our spinor conventions, as well as the SM matrix ele-
ments for the W decays in (11) are listed in the appendix.
The production amplitude M = MTGC + Mν consists of
two terms given by

MTGC(τ ;λ, λ;Θ) = − β

4 sin2 θW
Aτ

λλ
, (19)

Mν(τ ;λ, λ;Θ) =
1

2 sin2 θWβ
δτ,−1 (20)

×
(
Bλλ − Cλλ

1 + β2 − 2β cosΘ

)
.

The expressions for Aτ
λλ

(which contains the left-handed
couplings for τ = −1 and the right-handed ones for τ =
+1) and for Bλλ and Cλλ are listed in Table 1. Since the
vector bosons carry spin 1, the TGCs do not contribute to
the WW helicity combinations (+−) and (−+). For the
other helicity amplitudes, the largest power of γ in the
coefficients Aτ

λλ
coincides with the number of longitudi-

nal W s. An exception are the couplings λa and λ̃a, which
correspond to dimension-six operators in the effective La-
grangian (cf. [1]) and occur with an additional factor of
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Table 1. Coefficients Aτ
λλ

, Bλλ and Cλλ of the matrix elements (19) and (20). The
indices of the couplings are a = L for τ = −1 and a = R for τ = +1. The relativistic
factors are defined by γ =

√
s/2mW and β = (1 − 4m2

W /s)1/2

(λλ) Aτ
λλ

Bλλ Cλλ

(+−), (−+) 0 0 2
√

2β

(+0) γ[ga
1 + κa + λa − iga

4 + βga
5 + iβ−1(κ̃a − λ̃a)] 2γ 2(1 + β)/γ

(0−) γ[ga
1 + κa + λa + iga

4 + βga
5 − iβ−1(κ̃a − λ̃a)] 2γ 2(1 + β)/γ

(0+) γ[ga
1 + κa + λa + iga

4 − βga
5 + iβ−1(κ̃a − λ̃a)] 2γ 2(1 − β)/γ

(−0) γ[ga
1 + κa + λa − iga

4 − βga
5 − iβ−1(κ̃a − λ̃a)] 2γ 2(1 − β)/γ

(++) ga
1 + 2γ2λa + iβ−1κ̃a − i(β−1 + 2γ2β)λ̃a 1 1/γ2

(−−) ga
1 + 2γ2λa − iβ−1κ̃a + i(β−1 + 2γ2β)λ̃a 1 1/γ2

(00) ga
1 + 2γ2κa 2γ2 2/γ2

γ2. Note that the largest kinematical factors in Aτ
λλ

be-
have like γ2 at high energies, in contrast to the basis of
form factors fi used in Table 4 of [1], where huge factors
of γ4 appear. In the SM at tree level one has

gV
1 = 1, κV = 1 (V = γ, Z), (21)

and all other couplings equal to zero. For the anomalous
parts of the couplings we write ∆gV

1 = gV
1 −1 and ∆κV =

κV − 1 as usual.
A detailed discussion of the differential cross section is

given in [1]. Here we only point out some salient features
of the high-energy limit. In Fig. 4 we show the total cross
section for unpolarised beams as a function of

√
s. It rises

rapidly from threshold up to a maximum of about 20 pb
at

√
s ≈ 200 GeV, and in the SM decreases for higher c.m.

energies. In the SM each Z coupling is equal to the cor-
responding photon coupling. Since ξ = 1 + O(γ−2) the
L couplings are then of order 1 and the R couplings of or-
der γ−2. For τ = +1 this leads to a high-energy behaviour
of at most M ∼ O(1). For τ = −1 we have gL

1 = κL = 2ξ
in the SM, and the coefficients Aλλ and Bλλ only differ by
a factor 2 + O(γ−2) according to Table 1. As they occur
with different sign in (19) and (20) this again results in a
high-energy behaviour M ∼ O(1), except for very forward
W− momentum where there is an enhancement by the
propagator factor (1+β2 −2β cosΘ)−1. Altogether, these
gauge cancellations preserve the unitarity of the SM. We
also plot in Fig. 4 the total cross section for one anoma-
lous coupling differing from zero. At high energies each
coupling mainly contributes via the W helicity amplitude
where it occurs with the highest power of γ, i.e. either lin-
early or quadratically according to Table 1. At sufficiently
high energy, the square of an anomalous term dominates
over its interference term with the SM amplitude. In the
limit β → 1 the couplings g1, g4, g5 and κ̃ enter with a
factor γ, whereas κ, λ, λ̃ enter with a factor γ2, which ex-
plains their different behaviour in Fig. 4. Some couplings
have equal coefficients in this limit, which leads to a de-
generacy of the curves. We also remark that even if more
than one anomalous coupling differs from zero, anoma-
lous amplitudes belonging to couplings of different C or
P eigenvalue do not interfere in the total cross section
with unpolarised beams (cf. Section 3.3).
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Fig. 4. Total cross section with unpolarised beams as a func-
tion of the c.m. energy in the SM and for one anomalous cou-
pling differing from zero. Some curves coincide as explained in
the text

3 Optimal observables

In this section we discuss how the method of optimal inte-
grated observables is applied to our case. In an experiment
one measures the differential cross section

S = dσ|ρ/dφ, (22)

where φ denotes the set of all measured phase space vari-
ables. We distinguish between the information from the
total cross section σ =

∫
dσ and from the normalised dis-

tribution S/σ of the events. We first investigate how well
TGCs can be extracted from the latter, and then use σ
to get constraints on those directions in the space of cou-
plings to which the normalised distribution is not sensi-
tive.
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Since S is a polynomial of second order in the anoma-
lous couplings (defined as the couplings minus their tree-
level values in the SM) one can write

S = S0 +
∑

i

S1ihi +
∑
i,j

S2ijhihj . (23)

Here S0 is the tree-level cross section in the SM, and each
hi is the real or imaginary part of an anomalous TGC.
Thus there are 28 real parameters hi altogether. In the
remainder of this section i and j each run from 1 to 28.

One way to extract the coupling constants from the
measured distribution (23) is to look for a suitable set of
observables Oi(φ) whose expectation values

E[Oi] =
1
σ

∫
dφSOi (24)

are sensitive to the dependence of S on the couplings
hi. Given the present experimental constraints, we expect
these variations to be small. Thus we expand the expec-
tation values to first order in hi:

E[Oi] = E0[Oi] +
∑

j

cijhj +O(h2), (25)

with

E0[Oi] =
1
σ0

∫
dφS0Oi, (26)

cij =
1
σ0

∫
dφOiS1j − σ1j

σ2
0

∫
dφS0Oi, (27)

σ1j =
∫

dφS1j . (28)

Here E0[Oi] is the expectation value for zero anomalous
couplings, whereas cij gives the sensitivity of E[Oi] to hj .
Solving (25) for the set of the hj we get estimators for the
anomalous couplings, whose covariance matrix is given by

V (h) =
1
N
c−1V (O)(c−1)T, (29)

where we use matrix notation. Here N is the number of
events, and

V (O)ij =
1
σ0

∫
dφS0OiOj − E0[Oi]E0[Oj ] +O(h) (30)

is the covariance matrix of the observables, which we have
Taylor expanded around its value in the SM. As observ-
ables we choose

Oi =
S1i(φ)|ρ
S0(φ)|ρ

. (31)

From (27) and (30) one obtains for this specific choice

V (O) = c+O(h), (32)

and therefore

V (h) =
1
N
c−1 +O(h). (33)

The observables (31) are “optimal” in the sense that for
hi → 0 the errors (33) on the couplings are as small as
they can be for a given probability distribution1.

Apart from being useful for actual experimental anal-
yses, the observables (31) thus provide insight into the
sensitivity that is at best attainable by any method, given
a certain process and specified experimental conditions.
In the case of one parameter this type of observable was
first proposed in [17]; the generalisation to several param-
eters was made in [16]. Moreover, it has been shown that
optimal observables are unique up to a linear reparam-
eterisation [18]. We further note that phase space cuts,
as well as detector efficiency and acceptance have no in-
fluence on the observables being “optimal” in the above
sense, since their effects drop out in the ratio (31). This is
not the case for detector resolution effects, but the observ-
ables (31) are still close to optimal if such effects do not
significantly distort the differential distributions S1i and
S0 (or tend to cancel in their ratio). To the extent that
they are taken into account in the data analysis, none of
these experimental effects will bias the estimators.

In the present work we use the method of optimal
observables in the linear approximation valid for small
anomalous couplings. But we emphasise that the method
has been extended to the fully non-linear case where one
makes no a priori assumptions on the size of anomalous
couplings in [18]. Such a non-linear analysis for real data
was presented in [20] and turned out to be very convenient
and highly efficient.

Given the projected accuracy at linear colliders, it will
in general be necessary to take into account radiative
corrections to the process e−e+ → f1f2f3f4 within the
SM, which have been worked out in detail in the litera-
ture [26]. One possibility to include them in searches for
non-standard TGCs would be to “deconvolute” these cor-
rections. For this write the one-loop corrected differential
cross section in the SM as

SSM,corr(φ) =
∫

dφ′S0(φ′)F (φ′, φ), (34)

where S0 is the tree-level expression, and the integral ker-
nel can e.g. be obtained from an event generator by gen-
erating events according to both SSM,corr and S0. Approx-
imating the true physical cross section as

Sphys(φ) =
∫

dφ′S(φ′)F (φ′, φ), (35)

with S given as in (23), one could invert this convolu-
tion bin by bin, and then extract the couplings hi from
the deconvoluted Born level cross section S as described
before. The error made in (35) is that the SM radiative
corrections encoded in F do of course not apply to the
anomalous part S − S0 of the cross section, but this er-
ror is of order hi times the weak coupling constant αw.
Should effects beyond the SM be found in such an anal-
ysis, one would in a second step have to consider more

1 For details on this so called Rao–Cramér–Fréchet bound
see e.g. [24,25]
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sophisticated methods to quantitatively disentangle them
from SM radiative corrections.

3.1 Simultaneous diagonalisation

Although discrete symmetry properties (see Sect. 3.3) re-
duce the 28×28 matrices V (h), c, etc. to blocks of 8×8
and 6×6 matrices, these blocks still contain many non-
negligible off-diagonal entries. To make explicit how sen-
sitive the process is to each direction in the space of cou-
plings and to identify the role of polarisation we need to
know directions and lengths of the principal axes of the
error ellipsoid defined by (29), i.e. we have to know the
eigenvalues and eigenvectors of V (h). Using optimal ob-
servables, to leading order in the hi, the three matrices
V (h), c and V (O) are automatically diagonalised simulta-
neously due to (32) and (33). This means that after such
a transformation each observable is sensitive to exactly
one coupling, and the observables as well as the estima-
tors of the couplings are statistically independent. Since
V (h) is symmetric the diagonalisation could be achieved
by an orthogonal transformation. Following the proposal
of [18] we take however a different choice and transform si-
multaneously V (h) into diagonal form and the normalised
second-order part of the total cross section into the unit
matrix:

σ̂2ij ≡ 1
σ0

∫
dφS2ij → δij . (36)

This can always be done since σ̂2 is symmetric and positive
definite. We therefore arrive at the following prescription
for the transformation of the couplings (using vector and
matrix notation):

h → h′ = A−1h, (37)

V (h)−1 → V (h′)−1 = ATV (h)−1A (38)
= diag

(
(δh′

1)
−2, (δh′

2)
−2, . . . , (δh′

28)
−2) ,

σ̂2 → σ̂′
2 = ATσ̂2A = 1, (39)

where δh′
i are the one-sigma errors on the new couplings.

This transformation exists and is unique up to permu-
tations and a sign ambiguity for each h′

i. Note that the
matrix A is in general not orthogonal. From (23), (31)
and (37) the transformation of all other quantities follows
as

S1 → S′
1 = ATS1,

OOO → OOO′ = ATOOO,
c → c′ = ATcA,

V (O) → V (O′) = ATV (O)A. (40)

The meaning of (39) is that all quadratic terms contribute
to the total cross section with equal strength:

σ = σ0

(
1 +

8∑
i=1

σ̂′
1ih

′
i +

28∑
i=1

(h′
i)

2

)
, (41)

where σ̂′
1i = σ−1

0

∫
dφS′

1i. Thus the anomalous couplings
do not mix in σ and are “naturally” normalised for the

process which we consider. This is not true in the conven-
tional basis, where changing different anomalous couplings
by the same amount has completely different effects on the
total cross section (see Fig. 4 in Sect. 2).

Moreover, the particularly simple form (41) of σ easily
allows one to use the information from the total rate: it
constrains the couplings to lie between two hyperspheres
in the space of the h′

i, whose difference in radius depends
on the measurement error on σ. Making in addition use of
the sign ambiguity in (37), one can for all σ̂′

1i �= 0 choose
the sign of h′

i such that σ̂′
1i > 0. This choice is however

not relevant for the analysis.
We finally note that the presented method of simulta-

neous diagonalisation is quite similar to the way one anal-
yses the normal modes of a multi-dimensional harmonic
oscillator in classical mechanics [29]. There the harmonic
potential (corresponding to V ) is diagonalised with re-
spect to the scalar product defined by the kinetic energy
(corresponding to σ̂2).

3.2 Numerical realisation

We now give some details of how the simultaneous diag-
onalisation can be carried out numerically. Although the
procedure finally aims at the disentanglement of the cou-
plings as achieved in (38), the numerical computation of
V (h) or V (h)−1 from (29) needs the inverse of the matrix
c or V (O) and might therefore be unstable, because before
the diagonalisation one cannot single out those directions
in parameter space where the errors are large. However, as
V (h′) and V (O′) are simultaneously diagonal for our ob-
servables, we can according to (32) equally well compute
the diagonal entries of

V (O′) = c′ = diag(c′1, c
′
2, . . . , c

′
28), (42)

and extract the errors on the couplings using (33):

δh′
i =

1√
Nc′i

. (43)

Hence, using the shorthand notation V = V (O) and V ′ =
V (O′), we have to solve the n2 + n equations

ATσ̂2A = 1,
ATV A = V ′ (44)

for the n2 entries of A and the n diagonal elements of
V ′. Since the multiplication of S by a constant changes
neither the observables (31) nor V nor σ̂2, the matrices
A and V ′ only depend on the normalised distribution of
the events but not on the total rate N . The latter enters
the errors on the transformed couplings only through the
statistical factor N−1/2 in (43). From (44) it follows that

V A = σ̂2AV
′. (45)

This is a generalised eigenvalue problem, with the c′i being
the generalised eigenvalues and the columns of A being
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the generalised eigenvectors. The pair (V ′, A) is called the
“eigensystem” of (44). A standard method for solving (45)
is to first perform a Cholesky decomposition [27,28]:

σ̂2 = MMT, (46)

where M is a lower triangular matrix, i.e. Mij = 0 for
j > i. Algorithms for the computation of M can be found
in the same references. Then (45) is equivalent to

CX = XV ′, (47)

where

C = M−1V (M−1)T, (48)

X = MTA. (49)

Equation (47) denotes a (usual) eigenvalue problem for the
matrix C, whose eigenvalues are the same as the original
ones and whose eigenvectors are the columns of X. Since
C is symmetric, (47) can be solved and the eigenvectors
are orthogonal with respect to the standard scalar product
(assuming non-degeneracy of the eigenvalues). Requiring
the eigenvectors to be normalised to 1, we have n condi-
tions

XTX = 1, (50)

which together with the n2 equations (47) are equivalent
to (44). The generalised eigenvectors are obtained by solv-
ing (49) for A. The procedure has to be followed for each
initial-state polarisation and c.m. energy separately, lead-
ing in general to different eigenvalues and transformation
matrices; the dependence of those quantities on polari-
sation is investigated in Sect. 4. In each case we use the
procedure iteratively, i.e. once A is obtained, we compute
V and σ̂2 for the transformed observables and couplings,
and then diagonalise these – already approximately di-
agonal – matrices again. We found this to be essential to
assure the numerical stability of the results. A stable value
was reached in most cases by the second evaluation and
at the latest by the fourth. In all cases at least five eval-
uation steps were carried out. The numbers presented in
Sect. 6 were obtained by averaging over the results of sev-
eral subsequent steps where the stable value had already
been reached.

We note that for situations where σ̂2 and V have the
same block diagonal structure, the diagonalisation can of
course be carried out for each block separately. This is
relevant in the presence of discrete symmetries.

3.3 Discrete symmetries

Let us now discuss the special role of the combined symme-
try operations CP and CPT̃ in the context of our reaction
[1,16,18]. Here C denotes charge conjugation, P parity
reversal, and T̃ “näıve time reversal”, i.e. the reversal of
all particle momenta and spins without the interchange of
initial and final state. Under the condition that the initial
state, as well as phase space cuts and detector acceptance

are invariant under a CP transformation, a CP odd ob-
servable gets a non-zero expectation value only if CP is
violated in the interaction. Similarly, if the initial state,
phase space cuts and acceptance are invariant under CPT̃
followed by a rotation by 180◦ around an axis perpendic-
ular to the beam momenta, a non-zero expectation value
of a CPT̃ odd observable implies the interference between
absorptive and nonabsorptive amplitudes in the cross sec-
tion. In terms of the three-boson couplings one finds that
to O(h) the expectation values of CP even (odd) observ-
ables only involve the CP conserving (violating) couplings
g1, κ, λ, g5 (g4, κ̃, λ̃). Similarly, CPT̃ even (odd) observ-
ables are to first order only sensitive to the real (imag-
inary) parts of the coupling parameters. The coefficient
matrix c is thus block diagonal in the following groups of
observables:

(a): CP and CPT̃ even,
(b): CP even and CPT̃ odd,
(c): CP odd and CPT̃ even,
(d): CP and CPT̃ odd.

One further finds that the first-order terms σ1i in the
integrated cross section can only be non-zero for couplings
of class (a).

The above requirements on the initial e+e− state are
nontrivial in the case of polarised beams. Since charge
conjugation exchanges e+ and e−, a CP invariant spin

density matrix requires
→
p

−
=

→
p

+
, in particular P−

t = P+
t

and P−
l = −P+

l . Under the same conditions the density
matrix is also invariant under CPT̃ times a rotation by

180◦ around k×
→
p

−
. Let us investigate the situation where

these requirements are not satisfied. From Fig. 5 we see
that the e+e− states where the beam helicities are aligned
are CP eigenstates. But the anti-aligned (∆τ = 0) states
are interchanged under CP and therefore are not eigen-
states. On the other hand, the amplitudes for these helic-
ity combinations are proportional to the electron mass in
the SM (supplemented by the most general TGCs). They
are thus generically suppressed byme/MW compared with
the amplitudes for aligned beam helicities (∆τ = ±1) 2.
With transverse beam polarisation, the two types of am-
plitudes can interfere, giving small me/MW effects in the
cross section. With purely longitudinally polarised beams
they do not interfere, so that effects due to the ∆τ = 0
combinations of e+e− are of order (me/MW )2 and thus
beyond experimental accuracy. We remark that the same
holds e.g. in the minimal supersymmetric extension of the
SM, where left- and right-handed leptons as well as their
superpartners only mix with a strength proportional to
the lepton mass. To investigate what can happen in more
generic models is beyond the scope of this work.

For general beam polarisation, a non-zero mean value
of a CP odd observable can be generated by genuine CP
violation in the reaction, or by the CP odd part of the spin

2 To be precise, one must exclude final states e+νee
−ν̄e,

where non-resonant graphs contribute in which the initial e+

and e− do not annihilate
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Fig. 5. Effect of a CP transformation on an e+e− state with
helicities aligned (top) or anti-aligned (bottom)

density matrix in the initial state. According to the above
estimate, the latter would require non-standard physics to
be experimentally visible, especially for longitudinal beam
polarisation, and thus be interesting in its own right. Sim-
ilarly, a non-zero result for a CPT̃ odd observable can
originate from absorptive parts in the process, or from ef-
fects of the amplitudes with zero total helicity of the initial
beams. If any such effects were observed, one could in a
next step investigate their dynamical origin, using their
different dependences on the beam polarisation. One pos-
sibility is to use that in the absence of ∆τ = 0 amplitudes
the cross section depends on transverse beam polarisation
only via the product P−

t P
+
t , as seen in (16). If P+

t = 0, the
cross section is then independent of P−

t and ϕ−, whereas
the interference between ∆τ = 0 and ∆τ = ±1 ampli-
tudes leads to terms with P−

t cosϕ− and P−
t sinϕ− to the

cross section, which can experimentally be identified via
their angular dependence on ϕ−. A possibility to search
for the presence of ∆τ = 0 amplitudes with only longi-
tudinal beam polarisation will be discussed at the end of
Sect. 4.

Returning to purely longitudinal beam polarisation and
the assumption that ∆τ = 0 amplitudes are negligible,
we remark that constraints similar to the ones discussed
above cannot be derived for C and P separately, since neu-
trino exchange maximally violates both symmetries. One
can however classify the TGCs according to their C and
P behaviour as shown in Table 2. As can be seen from the
amplitudes in Sect. 2, terms of distinct P or C do not mix
in the quadratic part of the total cross section

σ2ij =
∫

dφS2ij , (51)

provided that phase space cuts are separately invariant
under P and C. Under the same conditions the linear
terms σ1i in the integrated cross section for the couplings
gR
4 , gR

5 , κ̃R and λ̃R vanish. This is due to the absence of
the neutrino exchange graph for right-handed electrons
and the fact that those couplings differ in their P or C
eigenvalues from the TGCs in the SM. Finally, real and
imaginary parts of couplings do not mix in σ2ij .

In the LR-basis, σ2ij has an additional block diagonal-
ity, with two separate blocks for the R and the L couplings,
which cannot mix in the total cross section. Any block
diagonality of σ2ij means that already before the simulta-
neous diagonalisation (40) the subspaces corresponding to
these blocks are perpendicular to each other with respect
to the scalar product (a,b) =

∑
ij aiσ̂2ijbj . As a conse-

quence, two row vectors of A or two column vectors of

Table 2. Properties of TGCs under parity and charge conju-
gation

g1, κ, λ g4 g5 κ̃, λ̃

C + − − +
P + + − −

CP + − + −

A−1 which correspond to different blocks are perpendic-
ular with respect to the standard scalar product. In the
case of A−1 this follows from the first equation of (44) by
solving for σ̂2, and in the case of A by solving for σ̂−1

2 . The
comparison of the matrix products AAT and (A−1)TA−1

with this expected orthogonality thus provides a good way
to test the numerical results for A and A−1. Note however
that the transformation described in Sect. 3.1 cannot be
carried out on smaller blocks than those given by the four
classes (a) to (d) because the left-handed couplings mix
with the right-handed ones in V (O), c and V (h).

4 Polarisation

In this section we explore how the sensitivity of our process
to anomalous TGCs depends on the longitudinal polari-
sation of the initial beams. To this end we will introduce
an appropriate polarisation parameter P and analyse how
the eigensystem determined by (44) depends on it. This
may be seen as a preparation for interpreting the numer-
ical results in Sect. 6, which will be given in terms of the
same parameter.

To start with, we introduce a convenient notation to
make explicit the polarisation dependence of the matrices
σ̂2 and V , which have to be diagonalised simultaneously
according to (44). In the following we restrict ourselves
to the case of longitudinally polarised beams. Since in the
limit me → 0 only two beam helicity combinations con-
tribute to the amplitudes, we can use (16) to write the
differential cross section S = dσ|ρ/dφ in terms of the cross
sections SL and SR for purely left- and right-handed e−
beams (and opposite e+ helicities),

S = PLSL + PRSR, (52)

where

PL =
(1 − P−)(1 + P+)

4
,

PR =
(1 + P−)(1 − P+)

4
, (53)

SL = dσ(−+)(−+)/dφ, SR = dσ(+−)(+−)/dφ (54)

and dφ = d (cosΘ) d (cosϑ) dϕd(cosϑ) dϕ. Since we only
deal with longitudinal polarisation in this section we drop
the subscript “l” in the polarisation parameters. Note that
0 ≤ PL, PR ≤ 1. Integrating over dφ one obtains the total
cross section as

σ = PLσL + PRσR. (55)



384 M. Diehl et al.: Triple gauge couplings in polarised e−e+ → W −W+

In the LR-basis we have

Sa = Sa
0 +

∑
i

Sa
1ih

a
i +

∑
i,j

Sa
2ijh

a
i h

a
j , (56)

σa = σa
0 +

∑
i

σa
1ih

a
i +

∑
i,j

σa
2ijh

a
i h

a
j . (57)

We denote again the real or imaginary parts of the anoma-
lous TGCs by ha

i , but in contrast to (23) we now explicitly
write an index a = L,R, so that i and j only run from 1
to 14. Using vector and matrix notation we can rewrite
the total cross section as

σ = σ0(1 + hTσ̂σσ1 + hTσ̂2h), (58)

where

σ0 = PLσL
0 + PRσR

0 ,

σ̂σσ1 =
1
σ0

(
PLσσσL

1

PRσσσR
1

)
, h =

(
hL

hR

)
,

σ̂2 =
1
σ0

(
PLσ2 0

0 PRσ2

)
, (59)

with vectors (ha)i = ha
i and (σσσa

1 )i = σa
1i and the matrix

(σ2)ij = σL
2ij = σR

2ij . In the LR-basis and for longitudinal
polarisation we thus obtain the following expression for
the covariance matrix (30):

V ab
ij = P aP b

(
1
σ0

∫
dφ
Sa

1iS
b
1j

S0
−
σa

1iσ
b
1j

σ2
0

)
, (60)

with a, b = L,R. Let us now investigate in detail how
the eigensystem of σ̂2 and V depends on PL and PR. It
is useful to express PL and PR by new variables r and
P (to be specified below), so that σ̂2, V and hence also
their eigensystem only depend on P . For this purpose we
introduce P̂L and P̂R through

PL,R = rP̂L,R(P ) (61)

for some well-behaved rescaling function r(PL, PR), and
define the “r-normalised” quantities

σr
0 = P̂LσL

0 + P̂RσR
0 , (62)

Sr
0 = P̂LSL

0 + P̂RSR
0 . (63)

We then have from (59) and (60):

σ̂2 =
1

σr
0(P )

(
P̂L(P )σ2 0

0 P̂R(P )σ2

)
, (64)

V ab
ij = P̂ a(P )P̂ b(P )

×
(

1
σr

0(P )

∫
dφ
Sa

1iS
b
1j

Sr
0(P )

−
σa

1iσ
b
1j

[σr
0(P )]2

)
, (65)

where we have made the dependence on P explicit. Note
that the left hand sides of (64) and (65) depend on P

but not on r, since σ̂2 and V do not change when S is
multiplied by a constant. For the matrix M in (46) we get

M =
1√
σr

0(P )

(√
P̂LM 0

0
√
P̂RM

)
, (66)

where σ2 = MM
T

is the Cholesky decomposition of the
P independent submatrix of σ̂2. Then the result for the
transformation (37) is

h′ = A−1h = X−1MTh (67)

= X−1(P )
1√
σr

0(P )

(√
P̂LM 0

0
√
P̂RM

)
h.

The factors
√
P̂L and

√
P̂R in the rightmost matrix de-

termine the mutual normalisation of the blocks of left-
and right-handed couplings. They let A−1 become singu-
lar in the limits P̂L or P̂R → 0. This is not surprising
because with beams of purely longitudinal polarisation
one is sensitive to only half of the couplings. The coef-
ficient (σr

0(P ))−1/2 in (67) leads to an overall normal-
isation which strongly depends on the polarisation. At√
s = 500 GeV we have for instance

tLR ≡
√
σL

0 /σ
R
0 ≈ 17, σr

0 ≈ σL
0 (P̂L + P̂R/172), (68)

whereas at
√
s = 3 TeV the ratio tLR is about 30. From

(50) we see that the matrix X−1 is orthogonal for any
P . In the case of pure polarisation it is block diagonal
in the left- and right-handed couplings. This is however
not the case for general (longitudinal) polarisation since
the diagonalisation cannot be reduced to smaller blocks
than those given by the four discrete symmetry classes
introduced in Sect. 3.3.

We now specify the transformation (61) by choosing

r =
1
4

(√
PR +

√
PL
)2
, (69)

and defining a polarisation parameter

P =

√
PR −

√
PL

√
PR +

√
PL

, (70)

with values −1 ≤ P ≤ +1. We then have

P̂R,L = (1 ± P )2 . (71)

In terms of the individual beam polarisations P− and P+

the parameters r and P are given as

r =
1
8

(
1 − P+P− +

√
(1 − P+P−)2 − (P+ − P−)2

)
,

(72)

P =
P− − P+

1 − P+P− +
√

(1 − P+P−)2 − (P+ − P−)2
. (73)
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Fig. 6. Eigenvalues (78) and entries of the matrices (80) and (81) for σL
0 = 1, σR

0 = (1/17)2, ṽLL = 1, ṽLR = 0.01, ṽRR = 0.0025
and (σ2)11 = 1

The reason for this particular choice is as follows. For
electron polarisation P−

0 and positron polarisation P+
0 =

−P−
0 one simply has P = P−

0 . For general polarisations P
is between P− and −P+, and the differential cross section
S for (P−, P+) equals the one for (P−

0 = P, P+
0 = −P ) up

to a constant. The eigenvalues c′i (cf. (42)) are hence the
same for (P−, P+) and for (P−

0 , P
+
0 ).

To develop some intuition of how the generalised eigen-
values of (64) and (65) depend on P , we consider the case
of only one left- and one right-handed coupling. Moreover,
we neglect the second term in (65), which appears only in
symmetry class (a). The matrix σ2 in (59) then reduces
to a single number (σ2)11, the vector (S1)a

i has only one
component sa ≡ (S1)a

1 , and the 2×2 matrices which have
to be diagonalised according to (44) can be written as

σ̂2 =
(σ2)11
σr

0(P )

(
P̂L 0
0 P̂R

)
, (74)

V =
1

σr
0(P )

(
P̂L 0
0 P̂R

)(
vLL vLR

vLR vRR

)(
P̂L 0
0 P̂R

)
, (75)

where

vLL =
∫

dφ
(sL)2

Sr
0(P )

, vLR =
∫

dφ
sLsR

Sr
0(P )

,

vRR =
∫

dφ
(sR)2

Sr
0(P )

. (76)

As in (48) we construct a symmetric matrix

C =
1

(σ2)11

(√
P̂L 0

0
√
P̂R

)

×
(
vLL vLR

vLR vRR

)(√
P̂L 0

0
√
P̂R

)
(77)

whose usual eigenvalues are equal to the generalised eigen-
values of V , i.e. to the diagonal entries of the transformed
matrix V ′ in (44). They are given by

c± =
1

2 (σ2)11

(
P̂LvLL + P̂RvRR (78)

±
√(

P̂LvLL − P̂RvRR
)2

+ 4P̂LP̂R
(
vLR

)2
)
.

We approximate the matrix entries (76) by

vab(P ) =
ṽab

P̂LσL
0 + P̂RσR

0

, a, b = L,R, (79)

with constants ṽab, which should take into account their
P dependence sufficiently well for a qualitative model. In
Fig. 6 we plot the eigenvalues c± in arbitrary units for
σL

0 = 1, and σR
0 = σL

0 /t
2
LR = (1/17)2, with the last number

taken from (68). The ratios ṽLL/ṽLR ≈ ṽLR/ṽRR ≈ tLR in
our choice of parameters are motivated by the power of sL
in (76), which corresponds to the power of the neutrino
exchange amplitude in the cross section. One can show
analytically that the slopes of the curves for c±(P ) tend
to zero for P → ±1. For P = 1 this cannot be seen in
the plot, since for large tLR (i.e. σL

0 � σR
0 ) the eigenval-

ues change rapidly as the e− beam becomes purely right-
handed. To see the horizontal tangent we plot a second
example in Fig. 7 with a more moderate value of tLR. No-
tice that for non-zero vLR the two curves for c+ and c−
do not touch. If P̂R or P̂L is zero the matrix σ̂2 in (74)
and hence C in (77) is singular, which leads to a zero
eigenvalue c− at P = ±1.

As in Sect. 3.2 let

X = (x−,x+) =

(
x11 x12

x21 x22

)
(80)

be the matrix whose columns are the normalised eigenvec-
tors of C. We can see from Figs. 6 and 7 that for P = −1
the vector x+ with large eigenvalue has only an upper
component (corresponding to hL), whereas the vector x−
with zero eigenvalue has only a lower component (corre-
sponding to hR). For P = +1 the situation is reversed.
This reflects the fact that one is only sensitive to the left-
handed couplings for P = −1 and to the right-handed ones
for P = +1. We finally plot the elements of the transfor-
mation matrix A−1 in (67) using the notation
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Fig. 7. Same as Fig. 6 but using σL
0 = 1, σR

0 = 1/10, ṽLL = 1, ṽLR = 0.15, ṽRR = 0.1 and (σ2)11 = 1

A−1 =

(
a11 a12

a21 a22

)
. (81)

Writing the transformed couplings as

h′ =

(
h′

−
h′

+

)
= A−1

(
hL

hR

)
, (82)

we can see that for P = −1 the right-handed contribu-
tions to both h′

− and h′
+ vanish, whereas for P = +1 the

same happens to the left-handed ones. This behaviour of
A−1 has to be taken into account when carrying out the
simultaneous diagonalisation for high degrees of longitu-
dinal polarisation, because it leads to a singularity of its
inverse in the limit P → ±1.

We have seen that under the condition that only beam
helicity combinations with ∆τ = ±1 contribute to the
cross section, the expectation values of normalised observ-
ables only depend on the polarisation parameter P . Such a
statement no longer holds if beams with helicities coupled
to∆τ = 0 contribute as well. This provides a possibility to
disentangle effects from genuine CP violation or absorp-
tive parts from those due to non-zero ∆τ = 0 amplitudes.
In particular, the CP odd part of the spin density matrix
for longitudinally polarised e+e− beams is proportional
to P+ + P− and will give different contributions to nor-
malised observables if P+ + P− is varied for fixed P .

5 Hardly measurable couplings

The particular form of the SM amplitudes for the pro-
cess e−e+ → W−W+ has consequences on its sensitivity
to the couplings in the CP conserving sector, which we
shall now discuss. To this end we write the TGC part of
the transition operator as

T TGC =
∑

a=L,R

7∑
i=1

(ha
0,i +Ha

i )T a
i , (83)

where for simplicity of notation we label the respective
couplings g1, κ, λ, g4, g5, κ̃, λ̃ by an index i = 1, . . . , 7.

Here ha
0,i are the SM couplings in the LR-basis and Ha

i =
ReHa

i + i ImHa
i are the complex anomalous couplings

(which we write in uppercase to distinguish them from the
real-valued parameters ha

i ). The non-zero SM couplings
are (see (21), (17))

hL
0,1 = hL

0,2 = 2ξ + 4 sin2 θW(1 − ξ),

hR
0,1 = hR

0,2 = 4 sin2 θW(1 − ξ). (84)

We first consider longitudinal polarisation where the
differential cross section S (cf. (22)) is given by (52). For
SR there is no neutrino exchange contribution, so that we
have from (6), (54) and (83):

SR ∝
∑
i,j

〈f |T R
i |+−〉〈f |T R

j |+−〉∗ (85)

× (hR
0,i + ReHR

i + i ImHR
i )(hR

0,j + ReHR
j − i ImHR

j ).

Consider now the following direction in the space of right-
handed anomalous couplings:(

ReHR

ImHR

)
=

(
0

ωhR
0

)
, (86)

where we assume ω � 1 and use the vector notation

HR =

HR
1
...
HR

7

 , hR
0 =

hR
0,1
...

hR
0,7

 . (87)

With (86) the second line of (85) equals

(hR
0,i + iωhR

0,i)(h
R
0,j − iωhR

0,j) = (1 + ω2) hR
0,ih

R
0,j . (88)

In the space of the imaginary parts of right-handed cou-
plings there is hence a direction in which the differential
cross section for unpolarised or longitudinally polarised
beams has no linear term in ω, but is only sensitive to or-
der ω2. This direction is determined by the real SM cou-
plings as given by (84). Therefore, one of the functions
S′

1i and the corresponding observable O ′
i in (40) are iden-

tically zero, and V (O) contains one (usual as well as gen-
eralised) eigenvalue in symmetry class (b) that is zero for
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Table 3. Total event rate N in units of 103 for the semilep-
tonic channels with e and µ summed over. Corresponding lu-
minosities are given in the text. P − and P+ respectively de-
note the degrees of longitudinal polarisation of the e− and e+

beams, and P is given in (73)

Polarisation
√

s [GeV]
P − P+ P 500 800 3000

−80% +60% −71% 3280 3410 1280
−80% 0 −50% 2050 2130 799

0 0 0 1140 1190 444
+80% 0 +50% 235 242 89.7
+80% −60% +71% 103 103 37

all values of P . This is confirmed by our numerical results
shown in Figs. 10, 14 and 18. In the tables of Sect. 6 the
eigenvalues of symmetry class (b), c′9, . . . , c

′
16, are given in

decreasing order. Using this notation we have

S′
1,16(φ) ≡ 0, c′16 = 0. (89)

From the total rate one can derive constraints on this cou-
pling as explained in Sect. 3.

Now consider(
ReHR

ImHR

)
=

(
ωhR

0

0

)
, (90)

which merely “stretches” the right-handed SM couplings
by a factor (1 + ω). Then the last line of (85) becomes

(1 + ω)2hR
0,ih

R
0,j . (91)

In the case of purely right-handed electrons or left-handed
positrons, i.e. for PL = 0, we have S ∝ SR from (52), so
that the anomalous coupling (90) only increases the to-
tal rate but does not affect the normalised distribution
σ−1S. This holds both to order ω and to order ω2. Sym-
metry class (a) therefore contains a fifth zero eigenvalue
for P = +1, in addition to the four zero eigenvalues from
the left-handed couplings Re gL

1 , Re κL, Re λL and Re gL
5 ,

which cannot be measured for PL = 0. This is again con-
firmed by our numerical results (cf. Figs. 9, 13 and 17).
For PL �= 0, however, SL also contributes to S. Since the
functions σ−1Sa are not identical for a = L and a = R,
the enhancement of SR due to (91) will not just change
S by an overall factor, but also modify the normalised
distribution σ−1S. The latter is sensitive to the anoma-
lous TGC in (90) in the linear approximation, since (91)
contains a term linear in ω. In contrast to symmetry (b),
there is thus no eigenvalue which is identical to zero for
all values of P . Note that SL contains interference terms
of the left-handed anomalous amplitudes and the SM neu-
trino exchange, so that the arguments above do not apply
to the subspace of the left-handed couplings. Also for the
symmetries (c) and (d) there is no similar argument be-
cause CP violating TGCs are absent in the SM at tree
level.

The direction (86) in coupling space becomes mea-
surable in the linear approximation with e+e− beams of
transverse polarisation. In fact, abbreviating

Aτ=+1
0 = 〈f |T0|+−〉, Aτ=−1

0 = 〈f |T0|−+〉, (92)

Aτ=+1
i = 〈f |T R

i |+−〉, Aτ=−1
i = 〈f |T L

i |−+〉,

where T0 is the transition operator in the SM at tree level
and T a

i is defined in (83), we can write the part of the dif-
ferential cross section (16) that is linear in the anomalous
TGCs as

dσ|linρ ∝
∑
i,a

(
P a
[
Re (Aτ∗

0 Aτ
i ) ReHa

i − Im (Aτ∗
0 Aτ

i) ImHa
i

]
−P−

t P
+
t

4

{
cos(ψ + 2Φ)

[
Re
(
A−τ∗

0 Aτ
i

)
ReHa

i (93)

− Im
(
A−τ∗

0 Aτ
i

)
ImHa

i

]
−τ sin(ψ + 2Φ)

[
Im
(
A−τ∗

0 Aτ
i

)
ReHa

i

+ Re
(
A−τ∗

0 Aτ
i

)
ImHa

i

]})
,

where of course a = R implies τ = 1 and a = L implies
τ = −1. As in Sect. 2 we denote the degrees of longitudinal
and transverse polarisation of the e+ and e− beams by
P±

l and P±
t , and as in Sect. 4 we abbreviate PL = (1 −

P−
l )(1 + P+

l )/4 and PR = (1 + P−
l )(1 − P+

l )/4. Note
that dσ|linρ depends on the W− azimuthal angle Φ only via
the explicit trigonometric functions in (93). One thus only
has dσ|linρ ≡ 0 if the three lines of (93) vanish separately.
The first line is however the same as what we had for
purely longitudinal polarisation, so that it vanishes for
generic polarisations P a only if condition (86) is fulfilled
and HL = 0. Then relation (93) becomes

dσ|linρ ∝ ω
∑

i

hR
0,i

(
− PR Im

(
A+1∗

0 A+1
i

)
(94)

+
P−

t P
+
t

4

{
cos(ψ + 2Φ) Im

(
A−1∗

0 A+1
i

)
+ sin(ψ + 2Φ) Re

(
A−1∗

0 A+1
i

)})

= ω
P−

t P
+
t

4

{
cos(ψ + 2Φ) Im

(
A−1∗

0 A+1
0

)
+ sin(ψ + 2Φ) Re

(
A−1∗

0 A+1
0

)}
,

where for the equality we have used the fact that A+1
0 =∑

i h
R
0,iA+1

i . Since A−1
0 contains the neutrino exchange

graph, dσ|linρ no longer vanishes. Transverse beam polari-
sation thus allows for the measurement of the anomalous
coupling (86), which is hardly possible using only longitu-
dinal polarisation.

Before presenting our numerical results for unpolarised
and longitudinally polarised beams, we must explain how
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Fig. 8a,b. Schematic view of the constraints in the case of symmetry class (b)

to take into account the zero eigenvector (86) of V (O) in
the analysis. From (33) and (40) we obtain for the inverse
covariance matrix of the couplings h

V (h)−1 = N(A−1)Tc′A−1, (95)

where the hi are again 28 real parameters, viz. the real
and imaginary parts of gR

1 , gL
1 , κR, κL, etc. We number

the couplings in the order of their symmetry class (a)
to (d), and within each symmetry class take the L cou-
plings first. We then have h13 = Im gR

1 and h14 = ImκR.
Note that V (h)−1 always exists, even in our case where
one parameter is unmeasurable. In this case V (h)−1 is a
singular matrix with a one-dimensional zero eigenspace
coming from c′16 = 0. Geometrically speaking, the error
ellipsoid defined by V (h)−1 is degenerate in such a way
that the length of one principal axis is infinite. Instead
of an ellipsoid we have a cylinder whose axis corresponds
to the direction of the unmeasurable coupling and whose
cross section (orthogonal to the axis) is an ellipsoid giving
the errors on the couplings in the orthogonal space. We
know from (84) and (86) that the unmeasurable direction
is given by Im gR

1 = ImκR �= 0 with all other couplings
being zero. Therefore the projection of the cylinder onto
the ( Im gR

1 )–( ImκR)-plane is a band in the Im (gR
1 +κR)-

direction; see Fig. 8a. This shows that we cannot obtain
any constraint on Im gR

1 or ImκR unless one of them is
known. We can however choose coordinate axes parallel
and orthogonal to the band shown in Fig. 8a. In other
words, we perform a rotation by −45◦ in the ( Im gR

1 )–
( ImκR)-plane,

h̃ = Rh, (96)

where R is the identity matrix except for the ( Im gR
1 )–

( ImκR)-block, which reads

1√
2

(
1 −1
1 1

)
. (97)

The new couplings h̃i are the same as the hi, except for
h̃13 = Im (gR

1 − κR)/
√

2 and h̃14 = Im (gR
1 + κR)/(

√
2),

which replace Im gR
1 and ImκR. The inverse covariance

matrix of the new couplings is

V (h̃)−1 = RV (h)−1RT. (98)

All entries in the 14th row and in the 14th column of
V (h̃)−1 are equal to zero: there is no correlation between
the unmeasurable Im (gR

1 +κR)/
√

2-direction and the cou-
plings h̃i with i �= 14. These couplings are hence con-
strained by a 27-dimensional ellipsoid, which is drawn
schematically in Fig. 8b for one further coupling, taken to
be ImλR. This ellipsoid is determined by the “reduced”
27 × 27 matrix V −1

red (h̃) obtained from V (h̃)−1 by deleting
the 14th row and the 14th column. Its inverse Vred(h̃) is
the covariance matrix of Im (gR

1 − κR)/
√

2 and the other
26 measurable couplings. In particular, the width of the
band in Fig. 8a gives the error on Im (gR

1 − κR)/
√

2 in
the presence of all other 27 couplings h̃i; cf. Figure 8b. We
finally mention that because of the discrete symmetries
explained in Sect. 3.3, the matrix V (h)−1 is block diago-
nal with one block for each symmetry class (a) to (d), so
that the errors on the couplings of class (a), (c) and (d)
are entirely unaffected by the previous discussion.

6 Numerical results

In this section we present the results for the generalised
eigenvalues c′i of the covariance matrix V (O) and the cor-
responding errors δh′

i = (Nc′i)
−1/2 on the transformed

couplings. The covariance matrix for the couplings in any
other parameterisation is then obtained by conventional
error propagation. We discuss its most important proper-
ties in the LR-basis for

√
s = 500 GeV and unpolarised

beams in Sect. 6.1. In Sect. 6.2 we investigate the gain
in sensitivity by longitudinal e− as well as additional e+
polarisation. The results for higher c.m. energies are re-
ported in Sect. 6.3. In Sect. 6.4 we finally give the con-
straints which can be obtained from the total rate ac-
cording to (41). Numerical rounding errors on the results
presented in this section are typically of order 1%.

We use mW = 80.42 GeV and mZ = 91.19 GeV from
[25], and the definition sin2 θW = 1 − m2

W /m2
Z for the

weak mixing angle. For the total event rate N of the
semileptonic channels with e and µ summed over we use
the values listed in Table 3. They correspond to an ef-
fective electromagnetic coupling constant α = 1/128 and
integrated luminosities of 500 fb−1, 1 ab−1 and 3 ab−1 at
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Table 4. Errors δh in the presence of all other couplings and correlation matrix W (h) at
√

s =
500 GeV with unpolarised beams for the couplings of symmetry (a) (see Sect. 3.3), i.e. for the real
parts of the CP even couplings

h δh × 103 Re ∆gL
1 Re ∆κL Re λL Re gL

5 Re ∆gR
1 Re ∆κR Re λR Re gR

5

Re ∆gL
1 2.6 1 −0.60 −0.35 0.21 −0.070 0.25 −0.054 0.15

Re ∆κL 0.85 1 0.096 −0.054 0.20 −0.59 0.13 0.019
Re λL 0.59 1 −0.034 0.099 −0.080 0.030 0.10
Re gL

5 2.0 1 −0.084 0.11 −0.13 0.075

Re ∆gR
1 10 1 −0.70 −0.56 0.65

Re ∆κR 2.4 1 0.023 −0.34
Re λR 3.6 1 −0.25
Re gR

5 6.7 1

Table 5. Same as Table 4, but for symmetry (b), i.e. the imaginary parts of the CP even couplings.
As explained in Sect. 5 we have δ Im (gR

1 +κR) = ∞ and no correlation of this coupling with the others.
Thus we only give the reduced 7 × 7 matrix here

h δh × 103 Im gL
1 Im κL Im λL Im gL

5 Im (gR
1 − κR)/

√
2 Im λR Im gR

5

Im gL
1 2.7 1 −0.47 −0.50 −0.12 0.028 0.16 0.038

Im κL 1.7 1 0.0070 0.41 0.33 −0.10 0.68
Im λL 0.48 1 −0.15 −0.00069 −0.21 −0.22
Im gL

5 2.5 1 0.081 0.22 0.50

Im (gR
1 − κR)/

√
2 11 1 −0.53 0.60

Im λR 3.1 1 −0.11
Im gR

5 17 1

√
s = 500 GeV, 800 GeV and 3 TeV, respectively. We as-

sume full kinematical reconstruction of the final state,
except that the jet charges are not tagged. Due to this
twofold ambiguity we cannot take the zeroth- and first-
order parts of the differential cross section S as the de-
nominator and the numerator of the optimal observables
O, but use their respective sums over the two experimen-
tally undistinguished final states (cf. [16]).

6.1 Unpolarised beams at 500 GeV

We first consider the sensitivity at
√
s = 500 GeV with

unpolarised beams. In Tables 4–7 we list the standard-
deviation δhi = [V (h)ii]1/2 for each coupling hi, which
gives its error in the presence of all other couplings. Notice
the difference of this to (Ncii)−1/2, which corresponds to
the error on hi when all other couplings are assumed to
be zero. We also give the correlation matrix

W (h)ij =
V (h)ij√

V (h)iiV (h)jj

(99)

of the couplings for each symmetry class (a) to (d). In the
case of symmetry (b) we use the reduced matrix Vred(h̃)
introduced in Sect. 5. Since W (h) is symmetric we only
list its upper triangular part.

The values of δh range from about 5 · 10−4 to 10−2

within each symmetry class. The smallest are those for
λL, κL and λ̃L since at high energies the corresponding
terms in the helicity amplitudes contain a factor 2γ2 (cf.
Table 1). In all cases the errors on the R couplings are

Table 6. Same as Table 4, but for symmetry (c), i.e. the real
parts of the CP violating couplings

h δh × 103 Re gL
4 Re λ̃L Re κ̃L Re gR

4 Re λ̃R Re κ̃R

Re gL
4 2.5 1 −0.055 −0.49 −0.091 −0.18 0.073

Re λ̃L 0.60 1 0.27 0.073 0.0088 −0.16
Re κ̃L 2.7 1 0.036 0.11 0.14

Re gR
4 10 1 −0.24 −0.47

Re λ̃R 3.8 1 0.65
Re κ̃R 11 1

Table 7. Same as Table 4, but for symmetry (d), i.e. the
imaginary parts of the CP violating couplings

h δh × 103 Im gL
4 Im λ̃L Im κ̃L Im gR

4 Im λ̃R Im κ̃R

Im gL
4 1.9 1 −0.059 0.092 0.20 0.22 −0.017

Im λ̃L 0.46 1 0.53 −0.15 −0.18 −0.015
Im κ̃L 2.0 1 −0.33 −0.099 0.14

Im gR
4 7.7 1 −0.12 −0.68

Im λ̃R 2.9 1 0.56
Im κ̃R 8.6 1

larger than those on the respective L couplings, viz. by
a factor 1.5 to 3.4 for Imκ, Re∆κ and Re g5, and by a
factor between 4 and 7 for the other couplings. This is be-
cause (for unpolarised or longitudinally polarised beams)
the ν-exchange interferes with the amplitudes containing
the hL, but not with those containing the hR. In general,
the sensitivity to the real part of a specific coupling is
roughly of the same size as the sensitivity to its imagi-
nary part, the errors on the latter being rather larger for
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Table 8. Generalised eigenvalues c′
i of the covariance matrix

V (O) and the corresponding errors δh′
i on the transformed

couplings, obtained from (43) and Table 3 at 500 GeV with
unpolarised beams for symmetries (a) and (b)

i c′
i δh′

i × 103 i c′
i δh′

i × 103

1 1.44 0.780 9 1.27 0.831
2 1.17 0.866 10 1.01 0.931
3 0.751 1.08 11 0.791 1.05
4 0.557 1.25 12 0.287 1.75
5 0.318 1.66 13 0.0584 3.88
6 0.108 2.85 14 0.0221 6.30
7 0.0366 4.90 15 0.0102 9.29
8 0.0147 7.72 16 0 ∞

Table 9. Same as Table 8 but for symmetries (c) and (d)

i c′
i δh′

i × 103 i c′
i δh′

i × 103

17 1.17 0.868 23 1.40 0.792
18 0.585 1.23 24 1.02 0.929
19 0.320 1.66 25 0.829 1.03
20 0.0645 3.69 26 0.219 2.00
21 0.0262 5.78 27 0.0316 5.27
22 0.0131 8.18 28 0.0241 6.04

Table 10. Coefficient matrix A × 102 for symmetry (b)

h′
9 h′

10 h′
11 h′

12 h′
13 h′

14 h′
15 h′

16

Im gL
1 140 −85 −130 97 12 7.1 0.86 0

Im κL −4.3 3.4 −1.3 −64 −15 0.80 12 0
Im λL 6.6 46 10 −6.1 0.87 −1.9 −0.94 0
Im gL

5 120 −52 150 −7.9 −16 13 12 0

Im gR
1 6.3 −11 8.2 −23 170 −91 110 −50

Im κR −0.89 1.7 −1.4 5.1 −37 7.6 −21 −50
Im λR −1.8 2.3 −1.2 −0.50 0.62 47 −6.5 0
Im gR

5 −22 16 1.4 55 −86 24 170 0

CP conserving couplings and smaller for the CP violating
ones. To get an accurate picture of the sensitivities, cor-
relations have to be taken into account. Looking at the
2×2 blocks corresponding to hL

i and hR
i for a given index

i, i.e. at the diagonal entries of the right upper block in
the correlation matrices, we see that the absolute values
of the correlations are smaller than about 0.2, except for
Re∆κ, Imκ and Im g5, where they are still smaller than
0.6. The corresponding correlations would be substantial
in the basis of the γ- and Z-form factors, which is hence
not a very suitable parameterisation for the present reac-
tion, compared with the LR-basis (cf. [16]). Considering
the matrix blocks of correlations among different L cou-
plings or among different R couplings, we find that about
half of them have an absolute value larger than 0.4. Note
that there are correlations of order 0.5 between couplings
with different C or P eigenvalues.

Table 11. Coefficient matrix A−1 × 102 for symmetry (b)

i Im gL
1 Im κL Im λL Im gL

5 Im gR
1 Im κR Im λR Im gR

5

9 42 45 110 29 0.49 −0.49 −6.7 −5.3
10 1.5 −12 210 −12 −1.2 1.2 7.3 3.9
11 −33 −54 −15 37 1.1 −1.1 −2.6 0.35
12 −0.73 −140 2.0 −1.9 −5.0 5.0 −14 13
13 −2.1 −38 7.2 −4.0 36 −36 87 −21
14 1.3 4.6 −6.6 3.1 2.2 −2.2 210 5.7
15 4.5 34 −1.5 2.8 19 −19 17 41
16 0 0 0 0 −35 −160 −40 0

By simultaneous diagonalisation (see Sect. 3.1) we de-
termine the generalised eigenvalues c′i and corresponding
errors δh′

i given in Tables 8 and 9. For symmetry class
(b) we give the transformation matrix A and its inverse
in Tables 10 and 113. In our numerical calculation we
find the smallest eigenvalue in symmetry class (b) to be
c′16 ∼ 10−14. We can however use the result of our ana-
lytical considerations in Sect. 5 and set c′16 to zero. The
same holds for the last column of A except for its Im gR

1 -
and ImκR-components, which determine the correspond-
ing “blind” direction in the LR-basis. As explained in
Sect. 3.3 the P odd coupling g5 does not mix with the
other couplings in σ̂2, and the same is true for the left-
and right-handed couplings. From this block structure of
σ̂2 and the relation σ̂2A = (A−1)T it follows that in the
last row of A−1 we can set all entries to zero, except for
the Im gR

1 -, ImκR- and ImλR-components. Numerically
we find that the absolute values of those matrix entries
which we set to zero are smaller than 10−8 for A and
smaller than 10−4 for A−1. We remark that we have com-
puted the matrix A−1 by inverting A using singular value
decomposition [28]. As mentioned at the end of Sect. 3.3
we have as a further check evaluated the products AAT

and (A−1)TA−1.

6.2 Polarised beams

At future e+e− colliders longitudinal polarisation of both
initial beams is envisaged [31–33]. An electron polarisation
of P− = ±80% and a positron polarisation of P+ = ±60%
is considered to be achievable.

In Tables 12 and 13 we give the errors δh on the real
couplings (in the presence of all couplings) for c.m. energy√
s = 500 GeV and various combinations of beam polari-

sations. For all couplings hL and all couplings hR we find
roughly the following gain or loss in sensitivity using al-
ways the event rates of Table 3. Turning on e− polarisation
of −80% we gain a factor of 1.4 for hL and loose a factor
of 6 for hR. If in addition P+ = +60% we gain a factor
of 1.8 for hL and loose a factor of 17 for hR compared to

3 The matrices A−1 for symmetry classes (a), (c) and (d)
can be obtained from the authors. Further numerical results
for unpolarised and longitudinally polarised beams at various
c.m. energies are given in [30]
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Table 12. Errors δh × 103 on the couplings of symmetry (a) at 500 GeV for different
initial beam polarisations

P − P+ Re ∆gL
1 Re ∆κL Re λL Re gL

5 Re ∆gR
1 Re ∆κR Re λR Re gR

5

−80% +60% 1.5 0.47 0.34 1.1 169 40 57 112
−80% 0 1.9 0.60 0.43 1.5 62 14 21 41

0 0 2.6 0.85 0.59 2.0 10 2.4 3.6 6.7
+80% 0 6.9 2.3 1.5 5.3 3.5 0.83 1.2 2.3
+80% −60% 13 4.5 2.8 10 2.0 0.47 0.67 1.3

Fig. 9. Generalised eigenvalues c′
i of the correlation matrix

V (O) for the couplings of symmetry class (a) (cf. Section 3.3)
at

√
s = 500 GeV. The c′

i do not depend on the total rate N .
Errors on the transformed couplings h′

i (37) are obtained as
δh′

i = (Nc′
i)

−1/2. Vertical lines mark the five cases investi-
gated in detail in Sect. 6.2, i.e. from left to right (P −, P+) =
(−80%, +60%), (−80%, 0), (0, 0), (+80%, 0), (+80%, −60%).
P is given in terms of P − and P+ by (73)

Table 13. Same as Table 12, but for symmetry (c)

P − P+ Re gL
4 Re λ̃L Re κ̃L Re gR

4 Re λ̃R Re κ̃R

−80% +60% 1.4 0.34 1.5 174 61 193
−80% 0 1.8 0.43 1.9 62 22 69

0 0 2.5 0.60 2.7 10 3.8 11
+80% 0 6.5 1.5 6.9 3.2 1.3 3.7
+80% −60% 13 2.9 13 1.8 0.70 2.0

unpolarised beams. For P− = +80% we loose a factor of
2.6 for hL and gain a factor of 3.0 for hR. If furthermore
P+ = −60% we loose a factor of 5 for hL and gain a factor
of 5.5 for hR compared to unpolarised beams. Especially
for the right-handed couplings the gain from having both
beams polarised is thus appreciable.

Fig. 10. Same as Fig. 9 for symmetry class (b)

The behaviour of the generalised eigenvalues as a func-
tion of the parameter P introduced in Sect. 4 is shown in
Figs. 9–20. Although the four largest eigenvalues are more
or less constant for P < 0, the transformation matrix A−1

is not. This can be seen from Tables 14, 15 and 16. For
the largest eigenvalue c′1 of symmetry (a) we find that the
smaller P is, the more the R-components are suppressed,
i.e. the more one purely measures the hL. Going from
P = 0 to P = 1 we become more and more sensitive to the
hR. For the fourth lowest curve in Fig. 9, corresponding to
c′5, as well as for the smallest eigenvalue c′8 of symmetry
(a) we find the opposite tendency. Note that in the case
of ±100% electron or positron polarisation we can only be
sensitive to at most half of the couplings. This is seen for
symmetries (c) and (d) in Figs. 11, 12, 15, 16, 19 and 20:
half of the curves go to zero at P = ±1. For class (a) (cf.
Figs. 9, 13 and 17) we find one additional eigenvalue going
to zero at P = +1 and for class (b) (cf. Figs. 10, 14 and 18)
there is a zero eigenvalue for all P , as explained in Sect. 5.
Comparing with Fig. 6 we see that for symmetries (b) to
(d) the shape of the curves is qualitatively well described
by the simple model of Sect. 4. Although the lower and up-
per curves for c± do not intersect in our examples there,
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Table 14. Vector components belonging to the largest eigenvalue c′
1 of symmetry (a) at

500 GeV for different longitudinal polarisations. Each line is the first row of A−1 × 102 in
the LR-basis

P − P+ Re ∆gL
1 Re ∆κL Re λL Re gL

5 Re ∆gR
1 Re ∆κR Re λR Re gR

5

−80% +60% −34 −150 −33 18 −0.19 −1.2 −0.089 0.11
−80% 0 −34 −150 −33 17 −0.72 −4.5 −0.36 0.41

0 0 −32 −150 −29 11 −9.0 −48 −7.1 4.8
+80% 0 −13 −84 −10 −3.9 −91 −390 −110 41
+80% −60% −5.5 −42 −4.9 −2.6 −190 −840 −240 79

Table 15. Same as Table 14, but for the eigenvalue c′
5 of symmetry (a)

P − P+ Re ∆gL
1 Re ∆κL Re λL Re gL

5 Re ∆gR
1 Re ∆κR Re λR Re gR

5

−80% +60% −1.5 −7.9 1.1 −2.1 7.0 14 8.3 −5.6
−80% 0 −2.9 −16 2.1 −4.1 13 28 16 −10

0 0 −9.5 −50 6.9 −14 37 82 44 −27
+80% 0 −13 −41 150 −20 14 42 −9.6 −39
+80% −60% −20 −72 100 −24 26 120 −28 −18

Table 16. Same as Table 14, but for the smallest eigenvalue c′
8 of symmetry (a)

P − P+ Re ∆gL
1 Re ∆κL Re λL Re gL

5 Re ∆gR
1 Re ∆κR Re λR Re gR

5

−80% +60% 0.029 1.0 0.071 −0.16 0.81 − 4.1 38 −0.91
−80% 0 0.054 1.8 0.17 −0.31 1.6 −7.5 73 −1.7

0 0 0.15 4.8 0.64 −1.0 5.4 −21 220 −4.8
+80% 0 0.26 14 1.2 −3.2 17 −61 650 −13
+80% −60% −3.2 47 −5.1 −8.5 38 −170 1100 −24

an intersection like in Fig. 11 is not excluded. In general, it
is however not possible to associate a certain pair of cou-
plings to a pair of curves in Figs. 9–20 for the full range
of P . This is particularly obvious from the eigenvalues of
symmetry (c) at

√
s = 3 TeV (Fig. 19), where some curves

alternately play the role of the lower-type and upper-type
curves in the simplified model. Moreover, for symmetry
class (a) the description of the shape of the eigenvalue
curves is less obvious due to the second term in the brack-
ets of (60).

6.3 Energy dependence

The gain in sensitivity when going up from 500 GeV to
800 GeV – using always the event rates of Table 3 – lies
between 1.4 and 2.7 for all couplings except for ImκR,
where it is 3.6. At 3 TeV we gain a factor of about 25
compared to 800 GeV for this coupling, and of 1.5 to 8
for all others. For symmetries (a) and (c) we give δh in
Tables 17 and 18.

Note that this gain is not due to the total rate, which
actually decreases with energy (cf. Table 3). The largest
gains are achieved for κ, λ and λ̃, which have a prefactor
2γ2 in the amplitude. We remark that both for real and
imaginary parts the gains in sensitivity for an L coupling

and the corresponding R coupling are of the same size,
except for ImκR. Furthermore, except for ∆κL, gL

4 , gR
4

and κ̃R, the gain is slightly larger for the imaginary than
for the real parts. For the real parts of the couplings we
also give the errors on the transformed couplings δh′

i in
Tables 19 and 20. Note that the transformations (37) are
not identical at the various c.m. energies, and neither are
the couplings h′

i. Due to the different normalisation of
the h′

i achieved by (37) their errors δh′
i may well increase

with rising energy although the errors in a fixed basis as
in Tables 17 and 18 decrease.

6.4 Constraints from the total rate

As explained in Sect. 3 the measurement of the total cross
section restricts the anomalous TGCs in the h′

i-basis to a
shell between two hyperspheres in the multi-dimensional
parameter space. For the couplings given in a basis before
the transformation we have hyperellipsoids instead of hy-
perspheres. With

√
s = 500 GeV and unpolarised beams

the expansion of the total cross section (41) is

σ/σ0 = 1 − 0.026 (100)
+ (h′

1 + 0.16)2 + (h′
2 + 0.026)2 + (h′

3 + 0.0042)2

+ (h′
4 + 0.0061)2 + (h′

5 − 0.013)2 + (h′
6 − 0.022)2
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Table 17. Errors δh × 103 on the couplings of symmetry (a) for different c.m. energies
√

s [GeV] Re ∆gL
1 Re ∆κL Re λL Re gL

5 Re ∆gR
1 Re ∆κR Re λR Re gR

5

500 2.6 0.85 0.59 2.0 10 2.4 3.6 6.7
800 1.6 0.35 0.24 1.4 6.2 0.92 1.8 4.8

3000 0.93 0.051 0.036 0.88 3.1 0.12 0.36 3.2

Fig. 11. Same as Fig. 9 for symmetry class (c)

Fig. 12. Same as Fig. 9 for symmetry class (d)

Fig. 13. Same as Fig. 9 for
√

s = 800 GeV (symmetry class
(a))

Fig. 14. Same as Fig. 9 for
√

s = 800 GeV and symmetry class
(b)
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Fig. 15. Same as Fig. 9 for
√

s = 800 GeV and symmetry class
(c)

Fig. 16. Same as Fig. 9 for
√

s = 800 GeV and symmetry class
(d)

+ (h′
7 − 0.0093)2 + (h′

8 + 0.00013)2 +
28∑

i=9

(h′
i)

2.

At 800 GeV we obtain

σ/σ0 = 1 − 0.016 (101)
+ (h′

1 + 0.13)2 + (h′
2 + 0.0078)2 + (h′

3 + 0.0025)2

+ (h′
4 + 0.0027)2 + (h′

5 − 0.0066)2 + (h′
6 − 0.013)2

Fig. 17. Same as Fig. 9 for
√

s = 3 TeV (symmetry class (a))

Fig. 18. Same as Fig. 9 for
√

s = 3 TeV and symmetry class
(b)

+ (h′
7 − 0.0062)2 + (h′

8 − 0.00023)2 +
28∑

i=9

(h′
i)

2,

and, finally, at 3 TeV:

σ/σ0 = 1 − 0.0071 (102)
+ (h′

1 + 0.084)2 + (h′
2 + 0.00083)2
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Table 18. Same as Table 17 but for symmetry (c)

√
s [GeV] Re gL

4 Re λ̃L Re κ̃L Re gR
4 Re λ̃R Re κ̃R

500 2.5 0.60 2.7 10 3.8 11
800 1.7 0.24 1.8 6.5 1.8 6.8

3000 0.90 0.036 0.97 3.4 0.36 3.2

Table 19. Errors δh′
i × 103 on the transformed couplings of

symmetry (a) at different c.m. energies

i 500 GeV 800 GeV 3 TeV

1 0.780 0.765 1.26
2 0.866 0.841 1.35
3 1.08 1.16 2.02
4 1.25 1.26 2.39
5 1.66 1.83 4.18
6 2.85 3.07 5.29
7 4.90 4.96 8.54
8 7.72 9.27 20.8

Table 20. Same as Table 19 but for symmetry (c)

i 500 GeV 800 GeV 3 TeV

17 0.868 0.832 1.35
18 1.23 1.22 2.03
19 1.66 1.58 2.52
20 3.69 3.39 5.12
21 5.78 5.54 8.74
22 8.18 9.53 20.9

+ (h′
3 + 4.3 · 10−6)2

+ (h′
4 + 0.00060)2 + (h′

5 + 0.0030)2 + (h′
6 − 0.0052)2

+ (h′
7 − 0.0017)2 + (h′

8 + 3.2 · 10−5)2 +
28∑

i=9

(h′
i)

2.

We remark again that the couplings h′
i are not the same at

different energies. For a measurement of the rate N with
a (purely statistical) error

√
N the thickness of the shell is

5.8 · 10−3 at 500 GeV, 7.2 · 10−3 at 800 GeV and 18 · 10−3

at 3 TeV (cf. Table 3). Systematic errors could be more
important. The results (100) agree quite well with those
of [18] for all couplings except for the smallest term h′

8
and for h′

3. Note that these results strongly depend on a
reliable transformation matrix A. In [18] numerical insta-
bilities occurred in the diagonalisation procedure, whereas
here A is obtained iteratively as explained in Sect. 3 and
was found to be stable.

It has been pointed out [18] that the constraints from
the total rate are in general of the same size as the largest
error on the couplings determined from the normalised
distribution, which we confirm.

7 Conclusions

We have investigated the sensitivity of optimal observables
to anomalous TGCs at future linear colliders in the reac-
tion e−e+ → W−W+ → f1f2f3f4. We have treated all 28

couplings at a time and disentangled them by a simultane-
ous diagonalisation of the covariance matrix of the observ-
ables and the term of the integrated cross section which
is quadratic in the anomalous couplings. Several relations
arising from discrete symmetry properties of the differen-
tial and the total cross section, based on the classification
of the TGCs according to their CP and CPT̃ eigenvalues,
have been used to simplify the analysis and to check the
numerical stability of the results. We have re-examined
the conditions for investigating CP violation in the pres-
ence of polarised e+e− beams. Suitably defined CP odd
observables receive contributions only from genuine CP
violation in the interaction and from the CP odd part
of the spin density matrix of the initial e+e− state. The
two kinds of effects can be separated using their different
dependence on the beam polarisations, either with trans-
versely polarised beams (cf. Section 3.3) or with suitable
combinations of longitudinal polarisations (cf. Section 4).
An analogous statement holds for the investigation of ab-
sorptive parts in the scattering amplitude by CPT̃ odd
observables.

We find that already at a 500 GeV collider with unpo-
larised beams and the event rates of Table 3, the statisti-
cal errors obtained with the optimal-observable method,
treating all couplings at a time, are considerably smaller
than the constraints obtained from single parameter fits
of LEP2 data. Our errors for

√
s = 500 GeV and 800 GeV

treating all couplings are of the same size or smaller than
those obtained at generator level for TESLA by a spin
density matrix method with a restricted number of cou-
plings [3,32].

We have performed a detailed study of the sensitiv-
ity to anomalous TGCs for different longitudinal polari-
sations and c.m. energies of the lepton beams. The polari-
sation dependence is conveniently expressed through a pa-
rameter P . A simple model has been analysed (see Figs. 6,
7), which provides an understanding of the dependence of
sensitivities on P . We find that beam polarisation can pro-
vide an appreciable gain in sensitivity, especially for right-
handed couplings (cf. Tables 12 and 13). At

√
s = 500 GeV

the sensitivity to these couplings increases by a factor of
about 3 when going from unpolarised beams to +80% elec-
tron polarisation. With additional −60% positron polari-
sation this factor is about 5 or larger.

In the sector of CP conserving imaginary TGCs we
have found one linear combination of couplings which ap-
pears only quadratically in the differential cross section for
longitudinally polarised beams (cf. Section 5). Therefore
the normalised event distribution of W pair production
for unpolarised or longitudinally polarised beams does not
provide a good way to measure this coupling – regardless
of whether the analysis uses optimal observables or any
other method. Information on this coupling can however
be obtained either from the total event rate, or from the
normalised event distribution with transversely polarised
beams.

Since our numerical results are at the “theory level”,
a study using Monte Carlo event samples and including
a detector simulation will at some point be necessary. As
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Fig. 19. Same as Fig. 9 for
√

s = 3 TeV and symmetry class
(c)

Fig. 20. Same as Fig. 9 for
√

s = 3 TeV and symmetry class
(d)

noted in Sect. 3 inclusion of detector resolution and phase
space cuts is easy in the framework of the method pre-
sented here.

In this work we have analysed the normalised event
distributions in the linear approximation for anomalous
TGCs. We emphasise that the extension of our method to
the fully non-linear case is available [18]. Such an analysis
for the non-linear case has indeed been performed success-
fully with LEP2 data [20].

To summarise, we have performed a detailed study of
the sensitivities achievable in the measurements of anoma-
lous γW+W− and ZW+W− couplings at future linear
e+e− colliders. We advocate the use of integrated opti-
mal observables for this purpose. We have shown that our
method allows for a very good overview of the sensitiv-
ities and of their dependence on the beam polarisations
in the space of the 28 anomalous couplings. Such mea-
surements will be a crucial check whether the structure
imposed by the fundamental gauge group SU(2)L × U(1)
of the electroweak interactions in the Standard Model for
the couplings of three gauge bosons is realised in nature.
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Appendix: conventions

Momenta and helicities of incoming and outgoing parti-
cles are denoted as in Fig. 1. We evaluate the production
amplitude in the frame obtained from the one in Fig. 1 by
a rotation of Θ around the y-axis, so that the new z′-axis
points along the W− momentum. For the respective pola-
risation vectors ελ and ελ of W− and W+ we choose in
this frame:

ε± =
1√
2
(0,∓1,−i, 0), ε0 =

1
mW

(q3, 0, 0, q0),

ε± =
1√
2
(0,∓1, i, 0), ε0 =

1
mW

(−q3, 0, 0, q0).

The four-spinors for the initial leptons are expressed
through two-spinors χ in the usual way [34], with

χτ=+1 =
(

cos
Θ

2
,− sin

Θ

2

)
,

χτ=−1 =
(

sin
Θ

2
, cos

Θ

2

)
(103)

for the electron and

χτ=+1 =
(

sin
Θ

2
, cos

Θ

2

)
,

χτ=−1 =
(

− cos
Θ

2
, sin

Θ

2

)
(104)

for the positron. The evaluation of the diagrams in Fig. 3
then leads to (18), where the d-functions are defined in
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the usual fashion:

d1
τ,0 = − τ√

2
sinΘ, (105)

d1
τ,±1 =

1
2
(1 ± τ cosΘ), (106)

d2
τ,±2 = ±1

2
(1 ± τ cosΘ) sinΘ. (107)

For the W decay tensors (11) one has

dDλ′λ = 24πmWΓ (W− → f1f2)lλ′ l∗λ d(cosϑ) dϕ,

dDλ′λ = 24πmWΓ (W+ → f3f4)lλ′ l
∗
λ d(cosϑ) dϕ, (108)

where

l− = d+(ϑ)e−iϕ, l− = d+(ϑ)eiϕ,

l0 = −d0(ϑ), l0 = −d0(ϑ),

l+ = d−(ϑ)eiϕ, l+ = d−(ϑ)e−iϕ, (109)

with d±(x) = (1 ± cosx)/
√

2 and d0(x) = sinx.
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